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1) KINEMATICS AND REVIEW OF “STANDARD” V-A THEORY’ 

We will be discussing throughout reactions of the form 

plhl) + N(P) - f,(q,) + r 

Pl, 2 
leptons 

N nucleon; mass M 
N 

; at rest in lab 

r hadron or hadrons (we will consider both exclusive 

and inclusive processes) 

Metric (1, -1, -1, -1) p2= M; 

Two important variables: 

9 = q1-q2 = leptonic momentum transfer. 

q2 = leptonic momentum transfer squared. 

v=M q 
lab 

NO 
= MN(El-E2) = leptonic energy transfer. 

Obviously v = q-p is corresponding invariant. 

2 
q = 4ElE2sin 

28 
2 9 = lab leptonic scattering angle. 

Lab picture is: 
9ZE2 

) /g qlE1 

N 
I- 

The “standard” V-A theory of weak interactions is obtained from a 

current-current effective Lagrangian: 

G-10m5/M~= Fermi constant 
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J;= (VA l+i2- Akti2) ~0s AC+ Wtti5- Akti5)sin0 
C’ 

OC 
= 15’= Cabibbo angle. 

comments: 

(i) a of V, A fixed by current algebra: 

[ VgL t). 
o- 

Vy (f, t) ] = i 6 (T-Y)fkPmVm(x, t) etc. 

(ii) The Lagrangian has charged currents only; possibility of neutral 

currents will be discussed extensively below. 

(iii) 
vlti2 

has G parity tl (like p) 

I 

i. e. d eff has first class 

AlA2 
has G parity -1 (like n), currents only 

Experimentalbounds on a possible second class current [ V (A S=O) with 

G = -1, A(A S=O) with G = 1 ] are not very good--such a current, with 

strength comparable to the usual beta decay current, is still not excluded. 

2) LEPTON CONSERVATION RESULTS FROM NEUTRINO EXPERIMENTS 

First major result from neutrino reactions was vp# v . This is 
e 

incorporated into 4 d- 
eff 

above in the form of two additive leptonic quan- 

turn numbers: 

NP tN = CONST 
v 

P 

Ne t N = CONST 
v 

e 

Possibility of multiplicative law. 
3 

P 
p,v =-l 

Anti-particle 

P muon parity: parities opposite 
P = t1 

e, v 
in sign to particle 

e parities. 
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In this scheme the product of muon parities is conserved, as well as 

NP+N tN tN Multiplicative law allows p 
t 

v e v’ 
- e+t bet v as 

p t 
e F 

well as p -et+ v t v 
e P’ 

So have 

t 
p --e+t ; t v additive law 

e 
r= 

t 
all p modes multiplicative law . 

In a v beam (obtained by sign selection) should have ve but negligible 

ve if r = 0. (There will be a small residual i 
e 

component from KL 

decays. ) That is 

flux v 
e 

flux v 
sensitively measures r . 

e 

From e’ determinations CERN Gargamelle group finds 
4 

r < . 25 at 

90% confidence. So additive law is fa~vored. This is important in con- 

structing Lagrangian models of the weak interactions. 

3) EXCLUSIVE REACTIONS 

(A) Quasielastic 

Have IT = N: single nucleon. 

Matrix element of hadronic current for v t n - p-t p is 
v 

AU 

rx = vAF;(q2) t 
iu q A 

” 2M 
N 

FV(q PM 2 2 p F;(q2) 
N 

-u’v,g,(s’) - sXy5hAh2H 
(Pl+ P2)AY5 

M 
N 

F:(nz, 



-5- 

No second class currents 3 F3 = F3 
V A 

= 0. 

cvc also 3 F;= 0. 

i 
F 

I,2 
V given by electron scattering data 

qA < I’-(J~~ ( vP’ oz m , 
I-r 

so hA(induced pseudoscalar) term is strongly 

suppressed. pl, probably well described by pion 

pole dominance. ) 

gA(o) = 1. 24. So the only thing not known is q2 - dependence of g A. We 

parametrize this in the form 
2 

9,(42, = 1. 24/ (1 - % j2 . 
M 

A 

Most recent result5 from Argonne bubble chamber filled with deuterium: 

MA= 0. 95 + 0.12 GeV/ c2. (Older CERN experiments gave a somewhat 

lower value). 

In satisfactory agreement with a determination of gA(q2) from a pion 

electroproduction low energy theorem. 
5 

03) A (1236) production (3, 3 resonance) 

r = A (1236) 

I-N+ 

Can make a relativistic version6 of the static 

tained from using the Born approximation 

model for this process, ob- 

N N N N N N 

for non-resonant partial waves t unitarized Born approx (using experi- 

mental resonant TN amplitude) for resonant multipoles. Gives essentially 
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unique predictions in terms ofelastic weak form factors F 1. 2 
v 9 gA’ hA, FT. 

This model works well for pion electroproduction for moderate q 
2 

; b 
2 

reaks down for larger q . 

In weak prod., is in satisfactory agreement’ with recent Argonne exper- 

iment in D2 (change from older CERN data in propane). Relativistic quark 

model (Feynman, Kislinger and Ravndal 
8 

) gives similar results. Ability 

to successfully model A (1236) production by charged weak currents is of 

importance in discussing neutral current tests involving A (1236). 

(C) Forward lepton theorem: 
9 

PCAC and CVC tests 

Consider any inelastic exclusive reaction iT # N) with the final lep- 

ton in the forward direction (R = 0) 

p1 
> P 

2 

Canshow<r~J~~N><~21JIA(Il>a<rI~AJ~~N>uptoleptonmasscor- 

rections. So can measure the divergence of the hadronic current in the 

forward configuration. 

How forward is forwarcl? Need lo q2$ 0.04 (GeV/ c)’ - 2 Mz to avoid ap- 

preciable interference with transverse parts of Jx 
h’ 

(Extension of this 

region possible but model dependent. ) 

Applications in strangeness-conserving reactions: 

(i) cvc -s ax V,:,, =o 

2 V-A interference, and hence parity violating effects, vanish in 

forward configuration. Get a CVC test. Will return to this idea when we 

discuss properties of neutral currents. 



(ii) Assuming CVC, only the axial-vector current remains. 

According to the partially-conserved axial-vector current hypothesis, 

‘A AFti = = +,t 

3 pion field 

so we get a proportionality between forward lepton cross sections and 

cross sections for pion-induced reactions, 

(TlitN-r) 

Remark: Most current algebra applications involve only PCAC sand- 

wiched between single particle on shell or low mass composite states. 

Thus, it is still possible PCAC could fail badly for matrix elements in- 

volving off shell states or composite systems of high mass--this is the 

possibility of so-called “weak” PCAC discussed by Drell. Brandt, and 

Preparata. Since for large E2-El we get large M 
r' 

above relation will 

serve as a test to distinguish between “strong” and “weak”PCAC: 
II 

“strong” PCAC 3 relation holds for all M 
r 

“weak” PCAC => relation holds for small Mr (say, in the 

resonance region) but is violated by -30% 

in region of large May (say MrL2. 5 GeV/ c2) 
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4) INCLUSIVE REACTIONS: SUM OVER ALL r FOR FIXED M 
r 

Both because of their experimental accessibility, and their con- 

nection with scaling and the light’cone, inclusive reactions occupy a 

central position in accelerator neutrino physics. 

Squaring the current-current form we find 

v, v m 02 P;P; Hz;; 

HV UP =+p $ t splncNIJhcv(r><r JJ~~(N> (2~1~ 64(ql+p-q2-pr) 

HV obtained by J - J t 
4 h h 

General structure of HV is 
12 

4 

HV r -g 
p”qA 

@P 

wvt PaPp wv- i EczpmX 
ap 1 M2 2 

2M2 

w;t?w; 

N N 
2 

MN 

t 
(Paqp+Ppq,) 

Wg t i 
(Pmqp-Ppqa) v 

2M2 2,; 
w6 * 

N 

When we contract with the leptonic tensor, terms with qQy, q 
P 

are propor - 

tional to the lepton mass. So we find 

2 
v. ; 

du G2 E2 2 9 

dkh 

= - - (cos 
2nM2 E1 

7 W;‘u 
-+ 2 sin2 e wU, c~ E1SE2 28 V, i 

2 1 M 
N 

sin zw 
3 ) 

N 
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(A) Before turning to scaling, we consider tests of the Gell-Mann local 

current algebra 
13 

m high energy neutrino reactions. We form the com- 

mutator -- 
[ s d3 x Jp,o) e 

iq’ x 
, [d3 

= 4 13cos2 9,t (3Yt213) sinZRC+ . . .9 or AS # 0; one nucleon 

spin-averaged matrix 

element vanishes 

Taking the one-nucleon to one-nucleon spin-averaged matrix element and 

using the p-03 method, we get the Adler sum rule l4 (q2, -p2, 

- Wi(V, q2)] = <4 cos2ed3+(3Y+213)sin20c>N 

proton target 

- 2 COSMIC+ 2 sin2eC neutron target 

= constant,independent of q2. 

Equivalently, this can be written as 

&em rdmvp 
1 

~~drr-l= $( 

‘-d(q’l dlq’k’ 

cos2 Oc+ 2 sin2eC) 

for all q2 - 

The q2-independence of the right-hand side tests the local current algebra. 

The precise value of the constant tests the construction of the hadronic cur- 

rent from pieces which individually obey current algebra. Adding further 

terms to the current would change the c&stant--what such terms might be 

will be discussed later on, when we consider “charm. ‘I 
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(B) Scaling variables and scaling assumption 
12 

Let us introduce new variables and dimensionless structure 

functions as follows: 

W1(v, q2) = G1(w, Iq2(/M;) 

v w2w. s2) 

M2 
= G2h, Iq2 (/M;) 

N 

v w3 w, q2) 

M2 
= G3(w> ‘s21/M;) 

N 

~=?!z-P=zv 1 < w < 03 is allowed kinematic range 
-q2 -q2 - 

v E2 -=I-- 
‘=M E 

N 1 E1 

x= 1 
w 

O~x,y~l . 

In terms of the G’ s the doubly differential cross section takes the form 

2 v.G 
2 

d LT G MNEl r (l-y-l xy MN)G~. b+ x y2 GV, 5 - 
dx dy = TT L 2 El 2 

+ xy 0-f y)G3 
v, q 

1 _I 
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Predictive content of this rewriting comes through making the Bjorken 

scaling 
15 

assumption: 

,;,d!7;;d 

Gi(w, /q’I/M;)= Fib4 exists 

Can attain large (q2 ) only for large neutrino energy El; dropping the 

MN/ El term we get the scaling regime expression 

2 
v, ; 

G 
2 

du MNEl 
dx dy = TI 

[-xy’F;? (x) t (l-y) F;’ ‘(x) ? xy(l-$y)F;” - (41 . 

Since the hadronic squared tensor H 
4 

is a positive semidefinite form, 

we have EWE@” H > 0 for arbitrary polarization vector E. 
4 - 

Thinking 

ahead to the intermediate boson exchange picture and taking E to cor- 

respond to absorption of scalar, left-handed and right-handed boson pol- 

arization components, we get the positivity conditions 

2 
o<r = lT 1 r”Z -I - s v+q2/2 - :w2 (-q1M2 + l)-wl_J= v(A) 1 2x - Fl/ 

N 

zirrF+g 
v&x) 1 1 2 3 1 

O<U zLrF-iF7 - L= v(I-x) L 1 2 3-I ’ 

i. e. in the scaling limit we have 

F2 (~1 2 2~ F1(4 

Flb4 2 +/F3k) 1 
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When y is integrated out we get 

du 
v,; G2M E 

N -= 
dx TT 

’ [$x F;“(x) +; F;“(x) +F~;.‘(x)] , 

or rearranging the V, ; cases separately to exploit the positivity conditions, 

du 
v G2M E 

N 1 -= 
dx TI 

du 
V G2MNE1 

-= 
dx ll 

-xF _ y> 0 
v, i 

=L 
= F;‘“- - F 1 “‘v>. 

2 3 - 

v, i 1 
aR 

= F1”’ “+ - F 
2 

CC) Regge asymptotics 

Let us briefly consider what happens when we combine Regge 

asymptotics with the scaling limit. Before going to the scaling limit 

a standard Regge analysis gives for the asymptotic behavior of Wi(v. q2) 

W 1 “& P1(q2) ” 

cr,(O) 

W 
a2w-2 

2 “& P,hz, ” 

W 3 v~m P3(s2) ” 

[Y3(0)-1 

f 

with each cy the t = 0 intercept 6f’the appropriate leading trajectory. 

Since the Pomeron can contribute to W 
1, 2 

we have a 1 ,(O) = 1; the lead- 

ing trajectories for W3 (which comes from the negative G-parity V-A 

interference) have o,(O) = t . Now let us suppose that we can take the 

Regge and scaling limits simultaneously. This assumption uniquely 
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specifies the large-q’ form of pi(q2) to be power-behaved, and we get 

F 
cyl(O) 

1 o=* v 

F 
w=co P2O 

cu2(0)-1 

2 

=3 

Q3 (0) 

w&p3w * 

Thus, Regge ideas combined with scaling suggest that F2(m) will behave 

as p 
l-l 

2 
w = CONST as o-co, which appears to be the observed behavior. 

Of course, if we take a linear combination such as FVP. FfiP 
2 2 

from which 

the Pomeron decouples, we expect the dominant trajectory to be the p 

[ with (Y (0) = 
P 

+I P 

I 
and the asymptotic behavior becomes w ’ as w-CD. 

This fact guarantees convergence of the scaling form of the local cur- 

rent algebra sum rule [ see immediately below] . 

(D) Applications of the scaling formalism 

6) First rewrite the local current algebra sum rule in scaling form: 

[ F;- F;] = Jl e[ F; - F;] 
0 

: <4 cos2e I + (3Y+213)sin2B > 
c3 CN 

Scaling makes the q 
2 

-Independence of the integral automatic; the key 

question becomes the value of w at which the sum rule saturates and the 

constant thus produced. 

(ii) Next we consider the total cross 
15a 

section . Integrating on x and 

y we get 

v, ; 
r cross sections rise linearly with lab neutrin,o 

energy. This. rise is seen from CERNl’ en- 
ergies up to and beyond El=150 GeV at NALl’. 
(Added note: Possible deviations from linearity 
in (r v were reported by Mann at this Conference. ) 
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16,17 cv 1 
Experimentally, -v” 

C 
5 on targets with roughly equal nos. of 

protons and neutrons. To interpret theoretically, we consider isoscalar 

target (2 = j A) and neglect strangeness-changing contribution to struc- 

ture functions (sin2 e,/ cos2BC<< I) Then charge symmetry (V 1t12’ 

Vlmi2 in same isospin multiplet and likewise for V-A) implies that 

Fy”, F!% VP - 
1 

1 , Fi = F; 

and hence 

+ (Fy t FV”, = + (Fyt F;“) = F., 
1 

so we can drop superscripts v, i when discussing an average nucleon 

target under the above-stated assumptions. Hence 

2 
idxaS +f $dxx aLt idwaR 

-= 

CV 
1 

j;dxaSt & dxx a L 3 J&=&7 +-I 

i 
=> f&+3 

C 

Experiment gives 
1 

= extremal value of - => 
3 

dx x a Rn 0 

Since a sl 0 and aR- > 0 for all x, we learn 

i -0 i. e. F2 (x) = 2x Fl (x) 
17 

=S 
(Callan-Gross relation 

for spin - l/2 constituent) 

=R= 
0, i.e. F3(x) - -2 Fl(x) (V-A interference is 

maximal) ::; 

Since there is only one independent structure function now, we find for 

the y distribution on an isoscalar target 
:‘- 

This relation holds for all x except ve,ry near x = 0, where Regge 
asymptotics (see p. 13) requires F cc x7 F1 as x-0. 

3 
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du 
v G2M E 

N 1 -= 
dx dy TT F2 (4 

du 
i G2MNEl 

Remarkably simple forms ! 

-= 
dx dy = F2(X)(l-y)2 

Caltech-NAL experiment 
16 

for V: (a) consistent with flat y distribution 

(b) finds Fy” (x) which agrees with 

-&F2 eN( ) x measured in electron scattering 

(here N = $ (n+p) = average nucleon target) 

Mean muon (secondary lepton ) energy: 

Jr: 
dy(l-y) 

1 
v <E2/E1> = <l-y> = 1 

S,dy =’ 

; <l-y> = 

(iii) Another useful scaling variable: 
18 -lA 

” = xy = 2MNE1 

E2 
= 2(F ) sin 

29 

N 
2 mdependent of initial 

neutrino energy. 
Y 

Combining with simplified neutrino 
du 

- above: 
dx dy 

; ( % F2(x) 
du 

[r 
dx F2k) 

independent of neutrino energy 

El and of the neutrino flux. 

So use of the Y variable allows scaling tests, and extraction of F2, even 

if initial neutrino energy and flux cannot be determined. The NAL 
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experiments actually do have information on El (from calorimetry) 

and on the neutrino flux, so this trick’is not essential. 

(iv) Suppose there is an int’ermediate boson (or scaling violation 

through a form factor). 
du 

Then the formula dx = El ip (x, y) gets 

du replaced by - = 
El @key) 

dx dy 

To calculate the large -El behavior of the total cross section: 

-q2= 2MNE,xy 

c = j”j+ dy E1”x’ ‘) 
11 

E 2, @(O.O)~,fdx dy 
E1 

I 1s 2MNElxy 1 2 1 00 

M2 
t 

M 
2 w 

= @(O, 0) ti- 
linear rise turns over into a 

In It 
2MNE1 

N I 2 
MW 

I logarithmic rise 

5) QUARK PARTON MODEL 
12 

A linearly rising cross section is suggestive of the asymptotic 

behavior of neutrino scattering from a free nucleon. This is the motivation 

of the quark parton model - the nucleon is regarded as an assemblage of 

almost free partons (and antipartons) of light mass, which carry quark 

(antiquark) quantum numbers. When interacting with an energetic neu- 

trim (or electron) the partons scatter incoherently, so the total scatter- 

ing cross section is a sum on cross sections for the individual partons. 

The picture is supposed to apply in frames in which the target nucleon 
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has very large momentum 7, so that the target four-momentum p 

can be regarded as essentially lightlike, p2= 0 (i. e. , we are approach- 

ing the infinite-momentum frame) 

Have quarks p n A antiquarks p n x 

Q 2 I 1 1 1 

3 -3 -3 
_- 2 

3 5 3 

B 1 1 1 
T 7 3 

_- 1 _- 1 _- i 
3 3 3 

S 0 0 -1 0 0 1 

Each parton of type i is assumed to have a density distribution 

ui(x) for carrying fraction x of the total proton four-momentum p, 

O<x<l. - - Now consider scattering of an individual parton 

Since partons are quasi-free, the final parton must be on the mass 

shell for the process to be kinematically allowed. i. e. we must have 

0 2 p’ 2 2 2 2 2 
=m 

z 
parton 

=(qtxp) =q t2xq.ptxp 

- &I 

=> x= - L 
2q.p: 

just the scaling variable introduced before. 

Get scaling, of course, from approximation 

of neglecting masses. 

So for a given q 
2 

and V, deep inelastic lepton scattering “sees” only 

that part of the parton distribution with (longitudinal) momentum frac- 
2 

tion x = -- ~ 
2q- P 

Get the total deep inelastic structure function by 

summing over contributions from the different types of partons, 
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H ~p=i~i ui (x) hop 

? 
Structure function calculated in Born approx: 

current current 

parton i parton i 

Now in terms of basic quark couplings, 
A. 

Jh IS cos 0 
- A 

C 
py (I-y5)nt.. . , i. e., 

it has pure V-A character. For h 
4 

we find by a simple calculation 
t Darton 

h =- g 

(; :;;z;ton 

P 
4 4 

t2x p,pp t i t . . . 
P’9 - P’ q 

gczpwl+ 

Hence we identify 

fl= w1 = 1 

f==,=2, 
2 

M2 
2 

N 

f =p’ w3=72 

3 M2 
N 

f2= 2xfl -3 F2= 2x Fl when we sum 

over partons: Callan-Gross relation 

f3 = -2f 
1 

partons 

= 2fl antipartons 

Experimentally see F3(x) = -2Fl(x) 3 antiparton content of nucleon is 

_I_ 
small: u- - 0, u- = 0, UK = 0 

P n 

Because the basic parton couplings hxve pure V-A form, the VV and 

AA contributions to F2(x) are equal in the quark parton model: 

Fyv(x) = F?(X) . 

Evaluating the sums over partons (and keeping antipartons in) one 

gets linear relations for the structure functions 

These relations cannot hold near x=0, where Pomeron dominance tells US 
that the antiparton and parton content of the nucleon become equal. See 
note on p. 14. 



-19- 

6 
FR(x) =i2 C; ui(x)fj, C,: constants determined by the 

quark parton quantum numbers 

j = 1, 2, 3 (3 structure functions) 

R = UP-, VP-, vn-, in--, ep--, en- (6 reactions of interest) 

19 
From manipulating these linear relations one gets: 

(i) Equalities - in certain cases one can take linear combinations which 

eliminate the u’ s altogether, e.g. 

12 (F;‘- F;“) = F”;I” _ Ff;‘” (not tested) 

(ii) Sum rules - Integrals over 

give the target quantum numbers: 

S = j dx [ ux (x) - 
0 

13= j-‘dx [; (up(x) 
0 

appropriate combinations of the ui must 

u,(x)1 

- up - ; b*(x) - u,(x))] 

I 
B = j. dx $[ up(x)+un(x)tuX(x)-us-un(x)-uX(x)] 

0 

From these we get the current algebra sum rule given previously, and in 

addition the Gross-Llewellyn-Smith 
20 

sum rule 

Fi)= <4BtY(2-3 sin20C) t 213sin28 > 
CN 

(Current algebra sum rule sometimes called the I3 sum rule, Gross- 

Llewellyn-Smith relation the B or Y sum rule since this is what they 

involve when sinaRC= 0. ) 

(iii) Inequalities. The ui’ s are all densities and therefore are positive 

semidefinite, u. > 0. 
1- 

This gives many inequalities on the weak and electro- 

production structure functions. Some of the most important are 
12, 19 
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(=I FePt Fen 
(p-t*)+ Ub+*) 

2 2 
-5 (FTt FI*)@ =0= positive. [ ux 

A 120 
C 

Experimentally can extract j dx(Fyt Fin ) directly from neutrino total 

0 

cross section data on an average nucleon target. Find that 
16 

1 
dx(F;‘t F;*) = 5 ldx (Fyt Fy) 

0 

+u =u -0 i.e. 
A x 

strange quark densities in nucleon are small 

5F IN(x) = 5 F;N(x) consistent with Caltech 

N = 4 (ntp) 

result, as mentioned above 

CW2’ 2 ( rl (x) < 4 with rlW = 
F;” 4) 

- 
FzP (x) 

0 (r,(X) 5: 
r,(X) - l/4 

l-r,(x) 

<2 - 

Fvp (x) 
with r2(x) = 

2 

F;” (4 

This latter pair of inequalities tells-us that if rl(x) - 2 , r2 (x) must vanish! 

Experimentally, one finds that for x-l, rl gets very close to l/4. Hence 

for small and moderate w, F:(x) becomes negligible relative to 

F:(x). N ow setting Bc = 0 and using charge symmetry, the current algebra 

sum rule becomes 

r? (FF- FT) = s”” (f12*- s2’) = 2, 1 w 

vn 
and evidently F2 - F; > 0 is what is needed to make sum rule work! 

Estimates based on quark-parton models for the structure functions plus 

Regge asymptotics, and preliminary experimental evidence, suggest that 
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very large w is needed to actually saturate the sum rule - perhaps w 

22 
as large as 400 for 90% saturation. 

Many more detailed inequalities for the structure functions and their 

moments can be found in papers of Nachtmann. 
21 

Light-cone algebra 
23 

The hadronic tensor H 
4 

is the absorptive part of a forward current- 

hadron scattering amplitude, and therefore can be written as the Fourier 

transform of the commutator of the weak current with its adjoint, 

HQp = Jd4x eiqex< p I[ .Tb$), .J$-;)]p> 

An analysis of the Bjorken limit of H aP +A. q.P -03 with o fixed) 

shows that the dominant contribution comes from the light-cone region 

2 
x -I 0 (but x # O!) of the integrand; hence the statement that “the scal- 

ing limit studies the light-cone”. 

Light -zone algebra assumes that the leading light-cone singularity structure 

of [J, J, IS the same as in a free quark field theory, where it is re- 

presented as a sum of bilocal operators of the form 

rlS<cii;,r A $4;) 

y-maCrices\ A -matrix (internal symmetry matrix) 

The linear relations thus obtained (together with the positivity of absorptive 

parts) give exactly those constraints of the quark parton model which fol- 

low for general ui(x). So the free light-cone algebra gives an equivalent, 

field-theoretic way of deriving the parton model predictions. 

What happens in an interacting field theory ? This bring us to our next 

topic: 
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6) SCALING BREAKDOWN 

The possibility of scaling breakdown has been brought to the 

fore by the SPEAR experiment, which shows that (confirming CEA) 

Ot- (6) - CONST to s = 25 (GeV) 
2 

e e -hadron 

whereas the quark parton model predicts 

u+- (6) - CONST / s . 
e e -hadron 

SPEAR II, which will run about a year from now and will extend the 

2 
measurements to s = 81 (GeV) , should indicate whether the constant 

behavior continues, or is just a pre-asymptotic effect. If effect persists 

in SPII experiment, all versions of the parton model are in serious trouble. 

Chanowitz and Drell 
24 

have speculated that scaling breakdown occurs on 

the basis of three pieces of evidence: 

(i) The SPEAR (and similar, earlier CEA) results 

(ii) Deviations of the nucleon electromagnetic form factor from a pure 

dipole form, which indicate a mass scale - 10 GeV/c’. 

(iii) Systematic trends in the SLAC data, which can be made to scale 

by use of the Bloom-Gilman variable [ w ’ = wt Mi/i q2 1 ] but can also 

be interpreted as indicating a scaling breakdown on a mass scale of 

2 
-10 GeV/c . 

They suggest that there will be scaling breakdown characterized by a 

form factor 

VW2 (VP s2) 

M2 
= G2(u. /q’]/M;) = F2(x)[ 1 - +, 

N 
n 

A - 10 GeV/ c, 
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and interpret it as an indication of parton structure effects which are 

becoming visible. 

While these speculations give a reasonable estimate of the magnitude of 

a possible scaling breakdown, the pure form factor structure is prob- 

ably too naive. A more realistic form for scaling breakdown is obtained 

by returning to the light-cone analysis of H 
4’ 

We consider the product 

of currents appearing in the forward Compton amplitude of which H 
4 

is 

the absorptive part, and write its Wilson operator product expansion 
25 

J; (Y $’ J&c-;’ 

3 
ni0 

C(“‘(x2) 0 
4ty.. P, 

(0) XT . . xp* 

term which contributes to W 
2 

structure function 

t terms which contribute to Wl, W 
3 

t terms of higher twist [subdominant by full powers of 
1 

- in the 

(twist > 2) large lq2 1, v limit] Iq2/ 

0 
a$. . . II, 

(0) is a local operator with spin= nt2 (traceless and 

f 
symmetric) 

canonical dimension = nt4 
(powers of [mass] ) 

twist = dimension-spin = 2 

The C(*’ are c-number functions of their argument. Taking hadronic 

matrix element of 0 and spin averaging one finds 

<PI0 
4$. + *P 

P’ 
n 

spin av. 
= CONSTXp p p . ..p 

0 P t$ %I 

verifying that it gives a contribution to W 2 (the coefficient of p p in 
QP 

HcYp’* 
t Note that the p-dependence of the nth term of <p 1 JJ Ip> is 



-24. 

completely explicit: it contains exactly n+2 factors p. Comparing with the 

dispersion relation for the popp part of the forward current-hadron ampli- 

tude, 

pcrpp j”dv’ 

W2Wk12) 

v’-v 

(PC qP 
dv’ dw’ 

-cc a: dx ‘(x qn 
exactly in factors p (v” n+2 h~)n+2 

So by equating powers of pJ we find that the nth moment of vW2 with re- 

spect to x is uniquely related to the Fourier transform of the nth term 

(spin nt2) in the operator product expansion. Keeping track of explicit 

2 
powers of q we get 

26 

!i 

dx xn /!z2 (” q2) / 

I MiJ J 

= -,(*’ (q2) x ,-ONST 

Eyq2) = (q2)*+1( -$)*Jd4x eiq’XC(n)(x2) = Fourier transform of 

aq operator product expansion 

coefficient 

Application of this apparatus to discuss scaling (~atid its breakdown) ifi field 

theory: 
spin-index 

In free quark model: 0 (x) = symmetrized [ $(x)y 7 7 

ul’ . a u nt2 ‘1 ‘2 ‘* ‘l-ii-2 
Ul+_Yys)JI(X’l 

E(n) 2 (q ) = CONST independent of q2 

So all momentsd VW2 scale -3 VW, scales 

In interacting model: Have 0’ s involving gluon as well as Fermion fields. 

For set of .(*)I s of twist 2 and common spin nt2, we must do a 

finite matrix diagonalization to get a basis 0 
(*I i 

whose coefficients 

c(*) i 
have independent large-q’ behal4or. Renormalization group 
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arguments then 3 

1 

EC*’ i(q2) 2w 
_- 

c-c12j 2 ‘(*)i 
(g”) 

-q -co 

where 

i 

Y (*)i 
are power series in g”; y (n)i= 0 at g;:; = 0 

g:k = coupling constant fixed point of theory 

[ root of the Gell-Mann - Low equation or of the Callan- 

Symanzik function p. i.e. p(g*) = O] which governs 

asymptotic behavior . 

The y 
(*)i 

is the anomalous dimension of the operator 0 (*)i . Positivity of 

VW2;> (for i=l or for tower of smallest y’s if i > 1) 

‘(*) 
increasing monotonically with n 

‘(*) 
convex downward Q if any two y 

n 
are zero, all are zero 

Now consider the energy-momentum tensor e 
w 

: dimension 4 ~ twist 2 . 
spin 2 

From exact conservation of 0 
PV’ 

can show that it has anomalms dimen- 

sion zero. 

Moment xn- spin n+2 

3 
0 

x - spin 2 

3 idxq = CONST if 0 

MN 
w 

is only dimension 4, spin 2 

operator (as in (p4 theory); 
1 

= CONST t CONST’ (-q’)-z ‘(2)2 if there are two - 

dimension 4, spin 2 operators (as in vector 

i 
gluon theory); 

etc. 

Experimental imp~lication: area id-2 has a component which is 

N 
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2 
nonvanishing asQ-m coming from the energy-momentum tensor, in all 

field theo ry models. Since the energy momentum tensor is an isotopic 

singlet this piece will contribute equally to up, vn and hence (by charge 

symmetry, when 0 = 0) equally to VP, cp. 
C 

Now have two cases: 

(A) g:: # 0 (non-asymptotically free theories--all field theory models 

for the strong interactions except a pure non-Abelian gauge 

theory based on a semisimple Lielgroup) 

Then in general v(*) 
2 -zy(n) 

(gi’) # 0; moments show (q ) deviations from scaling. ~w (v q 
L 

) 

Behavior of 
26,2-t 2 ’ 

M2 
N 

SLAC 

VW2(V’ q2’ - \ ------__ larger q2 

M2 
‘\ 

N \ 
\ 

!l!L 

\ (a) Near x = 1 decreases to make 
\ 
\ 

\ 
higher moments decrease with q2 

\ 
\ (High n moments “see” x= 1 region) 

0 X-- 1 @) IfY(2)i all small, then area = CONST 

(c) Near x = 0, must increase to keep area 

approximately constant [ also Regge 

argument27for rise near x = 0] 

63’ g::: = 0 (asymptotically free theories - field theory models for the 

strong interactions based on a semisimple non-Abelian Lie group) 

However, because the “effective coupling” g(q’) turns off only 

logarithmically in the asymptotic region, g - 
CONST 

I*(-q2)’ 
one does not 

get exact Bjorken scaling, but instead there are logarithmic corrections 
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-l, 
En(i)(q2) 2- cp,-q2j Z (n)i 

-q -03 

@(n)i 
are numbers, computable in low order perturbation theory, which 

depend on structure of Lie group . 

Comments on the g;::= 0 case: 

(i) Moments now (Jn)Powerbehaved. 

(ii) Qualitative picture for vW2/Mi as before.“ 

(iii) Since all (Y 
(n)i 

are known (for a given model), one can give an 

2 
extrapolation procedure to go from given o. q to same o, 

28 
larger cl2 . 

(iv) Asymptotic freedom cannot explain precocious onset of scaling. 

(v) Asymptotic freedom predicts F + _ (s) - coysT (1 t& ) 
e e -hadron 

c> 0 

If scaling breaks down according to either 

mechanism (A) or (B). we expect: 
,/ 

(i) Cross section behavior A 

Total cros 

section (T 

S 

t 

linear1 1 subdominant 1 linear 
n=2 tensors I 0 
die away ; &a2 

NAL might see 

small deviations 

Energy scale for 

V = V is very, very 

large! 

Note: The conventional wisdom 
outlined above says that v must 
drop below its low energy strai# 
line to meet 6. However, a new 
result of Treiman, Wilczek and 
Zee (to be published) shows that 
any theory containing vectors 
(Abelian or non-Abelian), v can 
rise above the low-energy line a 

\ from linearity here/ 
-- 

still meet v, which rises faster. 
:::Except that VW2 is not Regge-behaved, 

Wilczek and Zee (to be published)] . 
and increases to infinity as x-0. [ Treiman, 
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2 
(ii) Current algebra sum rule still valid (but g -Independence of right- 

hand side is not automatic in the region of scaling breakdown.) 

(iii) Gross-Llewellyn-Smith sum rule fails if gal; # 0: holds in asyrnptot- 

ically free theories bti is approached logarithmically 

(i. e. 
1 

corrections vanish as - 
en-q2 

.) 

If exact scaling remains valid, all known field theory models of the strong 

interactions are in trouble! 

7) PROBLEMS WITH HIGH ENERGY AND HIGHER ORDER WEAK INTERACTIONS - 

MOTIVATIONS FOR RENORMALIZABLE THEORIES 

(A) Unitarity troubles in traditional weak interaction theory 
12 

(i) Local current-current theory: Consider ve e scattering 

2 2 
LT =%LrneE1 =GW 

2 

t lT 

w = center of mass energy 

famiIiar point particle 
linearly rising cross section 

But amplitude is pure S-wave 3 a (8” by unitarity 

1/ 2 
w2 

so for w, 2(&) = 900 GeV. the local current-current theory 

violates unitarity 

(ii) Naive intermediate boson theory: e V 
e 

W 

e x v 
e 

S-wave amplitude is 7 
w2 

en (--- 
M2 

) - unitarity violated only at 

W 
astronomical energy where 

2 

G M;Yn(+ - 1 
M 

w 
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But consider U+; - w+t w- 

24~ l/2 Here get unitarity breakdown at W 2 (- 
G’ 

- 2700 GeV. 

Same breakdown scale as for local current-current theory 

(B) Smallness of AS # 0 neutral hadronic transitions 12 

Suppose we use the local Fermi theory to calculate higher order weak inter- 

action effects. t - Consider (mainly for pedagogical purposes) Kt- p p 

From 

order Gn 

get a unitarity lower bound 
rd+-1 

0 
- 6. 1o-9 

r (KL-all) 

But there is also an order G2 process which contributes: 

t 
w 

s d*x e -hex < 0 1 J,(x) 

\ 
v / 

Dominant piece as q -CD can be 

estimated from current algebra 

using the Bjorken- Johnson- Low 

Find 

limit. or er 
5 

r(K;-p+p- G ) 
2 2 

l- (KoL- all) 
- 2.5 (=+I A = cutoff 

2T 

- unitarity’ bound P A< 10 G&/c’ 
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So modifications must appear to current-current theory at a relatively 

low mass! 

Other AS # 0 neutral hadronic processes give similar estimates . 

Discussion: 

One natural way to deal with these problems is to construct a renormaliz- 

able field theory of weak interactions. Such a. theory will be 

(i) unitarity - solves unitarity difficulties 

(ii) finite and calculable - no cutoffs appear in evaluating higher 

order processes. However, to keep AS # 0 neutral had- 

ronic transitions as small as they are experimentally, we 

will be forced to introduce a new hadronic quantum number 

“charm” and new “charmed” hadrons with masses <, 10 GeV/ c2. 

Two types of renormalizable field theories of the weak interactions: 

(C) Theories without fundamental vectors. For example, the models of 

29 
Kummer and Segr& , elaborated on by Shabalin 

30 
and Christ. 

30 
These 

theories treat the observed weak interactions as fourth order effects med 

iated by spin-0 boson exchange: 

MO, E” are heavy neutral 

A l-loop 

- >--~~~~ 

leptons with P, e leptonic 

amplitude 
quantum numbers; 

Bfro are heavy spin-0 
v 

P B” ‘e bosom 

This theory is renormalizable, and at energies much lower than M 
B 

it 

simulates the usual V-A effective coupling. These theories fell out of 

favor after Christ showed that imposing all known physical conditions 
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(smallness or absence of neutral currents, AS # 0 hadronic transitions 

strongly suppressed, etc.) required introducing many new particles. 

(D) Theories with fundamental vectors--ie. --intermediate vector boson 

theories. Of great current interest is the Weinberg-&lam 
32 

class of 

intermediate vector boson theories- -the so called gauge theories of the 

weak and electromagnetic interactions. Characteristics ofthese models: 

(i) They unify weak and electromagnetic interactions. The fundamental 

weak vector boson coupling is of order e = electric charge, and the basic 

weak process is the second order tree (no loop) amplitude 
coupling g - e 

propagator 
1 1 N- 

M;-q2 
2 

MW 

coupling g - e 

(ii) They are based on Lagrangians with non-Abelian (and possibly ad- 

ditional Abelian) gauge symmetry groups. Reason the gauge symmetry is 

needed: the propagator for a massive intermediate vector boson is 

-gplJ 
JL3! 

M2 
W 

M2 _ qz 
w 

1 
g uv 

term --as q - m 
2 

renormalizable 

9 
I j& 

M;-q2 M; 
term - 1 as q-03 spoils renormalizability 
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If propagator only couples to a conserved current, as is true in a gauge- 

invariant theory, we have quJV= 0 and the offending term drops out. This 

is the argument in the Abelian c-cse; in the non-Abelian case the Ward identi- 

ties (current conservation relations) are more complicated, but they still 

guarantee renormalizability. Unfortunately, the Ward identities are exact 

only when all particles are massless. When masses are put in the Lagrangian 

in the conventionalway, the Ward identities are broken and renormalizability 

is destroyed. 

(iii) The Weinberg-Salam theories solved the problem of getting renormaliz- 

ability in a realistic theory with masses by generating the masses by spontane- 

ous symmetry breaking--essentially a way of gently breaking the gauge sym- 

metry 90 that masses appear,but the high energy behavior is still that of the 

gauge-symmetric theory and therefore is renormalizable. Technically, this 

is accomplished by introducing scalar fields $ (Higgs scalars) which couple 

to the vectors and which develop a non-vanishing vacuum expectation < $> 
0 

to supply masses. So gauge models have scalar exchange as well as ‘vector 

exchange graphs; coupling of the Higgs scalars to leptons can be made 3 

weak and therefore is negligible in most applications. 

(iv) Tree unitarity 

Spontaneously broken gauge theories may be characterized as follows: they 

are the (essentially) unique vector theories of the weak interactions which 

are tree unitary 33 

tree graphs: graphs with no loops 

T 
N 

= invariant amplitude for N-point tree graph . 
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Have tree unitarity if and only if T 
4-N 

N 
is bounded by E when all invar- 

iants pi*pj approach infinity as a characteristic squared energy E2. (This 

tree bound holds for all garden-mriety renormalizable field theories.) 

Significance of tree unitarity: “bad” high energy behavior of one tree 

graph is cancelled by one or more other tree graphs. Consider example 

u+;- IV+ 

Have graph 

i_ 

W+ 
e 

v 
W- 

Gauge theories save unitarity by cancelling this with one (or both) of 

following: 

(a) 

cb) 

0 VW WS 

v 
w- 

\ 
neutral intermediate boson - neutral current ‘alternative 

heavy lepton with same lepton 
as electron but opposite elec- 

tric charge--heavy lepton altern- 
ative 

Because of their tree unitary nature, gauge theories involve either 

(a’ 

(b) 

neutral currents 

heavy leptons 

So searches for these in neutrino experiments are of great importance. 

From now on we will concentrate our attention on gauge theories. But 

first some cautionary remarks: 
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(i) Gauge theories may, like the scalar exchange theories, need many 

new particles (see “charm” discussion below). 

(ii) Can get effective V-A without fundamental V, A couplings. b 

experimental case for fundamental vector mediation of the weak inter- 

action must be made. 

8) WEINBERG-SALAM MODEL FOR LEPTONS AND HADRONS34 

Although there are many variants of gauge models of the weak and 

electromagnetic interactions, we will concentrate for sake of definiteness 

on the simplest, the original model of Weinberg and Salam. This model 

is based on SU(2) X U(1) gauge symmetry, which is the smallest gauge 

group incorporating the known leptons and the known leptonic weak and 

electromagnetic interactions. To see this we consider first just the elec- 

tron and its neutrino (will incorporate the muon and its neutrino, and had- 

rons, later on) 

Define a leptonic left-handed doublet by 
v 

L. = $l-Y5) ( ,“) 

Weak currents are <y -! 
u2 

(I-yg)~e= xy,~:L\ associated Jd3xLt7_L 

(l-y5)e = Ly, 7+L charges: 
I 

Jd3xLtT+L 

Charges form a closed SU(2) algebra if we adjoin the additional 

charge /-d3x Lt T~L associated with the current 

Lyr T3L = vev,+ (1-y5)ve- e y,$ (l-y5)e = neutral. 

The presence of this current to complete the weak interaction algebra 

implies that we will find weak neutral current effects. 
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To include electromagnetism we define a right-handed singlet 

R=+(l+v5) e 

Electromagnetic current is 

eym e = ey Cl-y5k + “y,i wf5)e 

= “y,; (I-T~)L + RyrR 

=+yrT3L+&~Rt+~L 

7 
\ v I 

neutral member 
of SU(2) 

associated charge lRiR t 1 Lt L 
2 

commutes with all SU(2) charges: generates 

independent U (1) group. 

So have ?qm ?L ; associated charges generate SU(2) 

I- 
& e t 2 Ly 

- I- 
(r rr3 cl 

T L = Ry R t 2 Ly 
m 

L = singlet under the SU(2): associated 

charge generates U(1) . 

So the minimal leptonic group is SU(2) X U(1) . 

SU(2) - triplet z of gauge fields. 
lr 

U(l) - singlet B 
cr 

of gauge fields. 

Coupling term in Lagrangian is 

t$ t + g’ (lyr’3L t 2;y”e)B 
(T 

Note that Br is not the photon field: it couples to 2eyre t Lywr3L. To 

identify the photon field A 
u’ 

we must find the linear combination of A 
3 
[r 

and B 
LT 

which couples to & e alone. 
(r 

The orthogonal linear combination 

Z will be an intermediate weak boson. 
(r 

Also, we must put in Higgs 

mechanism to give the weak bosons a large mass (while keeping the photon 

massless. ) We get the following physical fields: 



(i) WV=& (ALt i At), Wi=&(Ai-i A:) 

(ii) 

(iii) 
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Two charged vector bosons, mass M2 w= a x 2g2, 

A=<@> . 
0 

(8 Ai + g' Br 1 

zr= &q-g? 

A neutral vector boson, mass Mi= $k 2(g2+ gf2) . 

C-g’ A; + g BLT 1 
Ar= {g’ 
Photon, mass ~~ 

A 
=o. 

Expressing A3 
u’ 

Br in terms of A , 
CT 

Zm we can rewrite the coupling 

term given above in terms of the physical fields: 

<,, = wm (. . - ) + W; (. . . 1 t Am (. . . ) t Zr (. . . ) . 

From the charged vector boson exchange piece, we identify Fermi 

Writing for Convenience e, 
2 /Weinberg angle 

g2 

sin f3 
W 

we get the mass relations 

37 GeV/c’ sin 0 2 37 GeV/c’ 
W 

2 74 GeV/c2 . 

From the neutral vector boson exchange piece get neutral current lep- 

tonic effects. Leptonic sector predictions will be summarized below. 
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To incorporate muons: Take L as left-handed doublet. 

Add coupling 

‘&= +S ~~,$“~~ip)‘~v + $g’(i;& T3LlI-,)+2;yup)Blr 

To incorporate hadrons: 
35 

(A) Ignore strange particles. Take Lb) = $ (l-y51 N as left-handed doublet, 

with N = (pn). So add coupling 

“,= $g L($-;L 
(h) 

.x--t~g’(Lgl)u~7 L 
3 cn) 

-26 Y~P)B o- 

[ Note: by analogy with above 

E yF7L 
Cn) 3 b) 

+ 2; y”n = singlet 

-2; y”n - 2p y”p = obviously singlet 

so L(h)Yu’3L01)-2P YUP = singlet; this form couples photon to 

p rather than n, as required] 

The charged boson thus couples to the current 

Ny”+ (T1+iT2) (1-y5)N = Vyti2- ATti2 +I”, 

as expected. Expressing AZ ~ and B in terms of A and 2. we find 
r IT 

that the neutral boson z 
T 

couples to the hadronic neutral current 

Eyr+T3(1-y5) N - 2 sin2ewiyu+ (l+T3) N 

= V; - A: - 2 sin20 .J” 
W em 

Working out the effective coupling coming from the tree graph 

V 

x 

v 

Z 

N N 

one gets at low energies the effective neutral current Lagrangian 
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<ff =$ vy Cl-y5) vjF cr Z 

(B) With strange particles. The analog of the usual Cabibbo trick would 

be to take 

Lh) = 3 (l-y5) N, with N = ( ’ 
n cos 9 t A sin 8 ) 

C c 

as the left-handed doublet, and to proceed as before. We would get 

JL”w=i vu; (T1+iT2) (1-y5) N 

= cos ec &” (l-y5) n t sin ec i y” (I-y5) A which is OK 

P f 
AS =Ocharged current AS #Ocharged current 

But the neutral current is now 
as before: this term OK 

p - 2 sin2BwNyui (1tT3) N 

;P y" (l-y51 p - $ G cos eCt LineC) y” (I-y5) (n cOsect A 
\ 

sin8C) 
/ 

Contains sineC cos Bc[ n y”(l-y5)X t j; y”(l-y5) n] 

which is a neutral AS f 0 weak current. 

So we get neutral, AS # 0 effects at order G; experimentally, they are 

much suppressed, 
2 

appearing only at order G or order Go. 

Simplest solution to this problem: GIM 
36 

(Glashow, Maiani, ,I.liopoulos) 

mechanism. Introduce a new additively conserved quantum number of 

the strong interactions called “charm”. 
37 

Assume two fundamental left - 

handed doublets 

LiW 
= $ (l-y5) N N=( P 

n c0se t A sine ) 
C 

L’Od 
= $ (l-y5) N’ N’= ( s 

-n sine t xc0se ). 
C C 



Here p’ is a “charmed” quark with electric charge tl. The two doublets 

couple identically to the gauge vector mesons, 

- 
+ $g’ (Lh)Yu~3L/h)+~~)YVT3Lt~)-2~Y(rp-2~~Y(Tp~)B~. 

Now we get 

8pw= %y”i (T1tiT2)(l-y5) N t ??I y”% (T1+iT2) (l-y5)N’ 

charged current as 

= case 
written in quark model 

c 6 y” (l-y5)n t sineC 5 Y” (I-Y5)X - 

-sineC fil YB (l-y5)n t cosEIc PI Y” (I-y5)X 
? Eharged “charm-changing” 

current: causes semi- 
leptonic decay of charmed 
hadrons into uncharmed 
bdrons 

while the neutral current becomes 

$i yr (I-Y5)p - + (n ~0s ect j;sinec)Yu (l-Y5) (n coseCthsineC) 

++P’ y?l-Y5)P’ - $ (-nsineCtj;coseC)Yu(l-Yg)(-n sinEICtA cosec) 
\ J 

$iY” (I-y5)n t + x yr (I-y5))\ 

AS # 0 pieces cancel by construction; 

That is. 

with 

CT 
Z 

= V: -A; - 2 sin20 J” 
W em 

t + J”c- + J” 
4 

pure isoscalar 

V:- A:= a i y” (l-Y5) p - $AY” (l-Y5)n 

r 
JC 

= 6 ’ YU (1-y5)p ’ = V-A “charm” current 

JL = h y” (l-y5)X = V-A strangeness current 
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So: introducing “charm” eliminates AS # 0 neutral effects of order G. 

Must still worry about induced AS # 0 neutral hadronic transitions due 

to intermediate boson radiativ-F corrections. Since the fundamental bos- 

on couplings are g, g’ - e, radiative corrections can induce effects of 

order Gcu (a = fine structure constant.) So must worry about strongly sup- 

pressed processes like Ki- ptp-, KL- KS mass difference,etc. Gaillard 

and Lee 
38 

have analyzed rare K decay modes in great detail in the GIM- 

modified Weinberg-Salam model. Their conclusions (which, they argue, 

are valid in many other popular gauge models as well): 

(i) K 
0 

L 
-+t~‘p- suppressed by fortuitous cancellation. 

(ii) To explain non-suppression of KL-yy along with small 

KL- Ki mass differences need 

==, 
2.. 1 
m 

P 

m = p quark mass 
P 

mP’ 
= p’ (“charm”) quark mass 

==a 
but r;iE<< 1 --in fact m < 5GeV/c2. 

W P’ N 

(iii) Phenomenological arguments indicate that average mass of 

“charmed” pseudoscalar states < 10 GeV/ c2. 

(iv) Kt--rr’e’e- should occur with a branching ratio N 10 
-6 

: 

comparable to the presently available experimental upper 

bound. Should push on this decay mode. 

Conclusion: Hadrons can be successfully incorporated in gauge models, 

but a new strong interaction quantum number “charm” is probably needed, 

with charmed states light enough so that they will be produced in the NAL 

neutrino beam. 
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9) TESTS OF GAUGE THEORIES IN NEUTRINO REACTIONS 

(A) Existence of W-boson 

(i) Single most crucial test of gauge theories would be to produce and 

detect W-bosons. Unfortunately, in most gauge models the W’ s are very 

heavy. Have 7 

thresh 
ML 

Ei 
W 700 GeV N-N 

2MN 
sin20 

W 
for MW = (37 GeV/c2)/sin BW 

and to have an appreciable cross section one would want 

E1 
thresh 

- 2 El 
1400 GeV 

- six+% 
W 

So W’ s will not be seen directly for a long time. 

(ii) Alternative way to see W’s is through effect of their propagator 

on semileptonic reactions. If Bjorken scaling were exact the effect of 

a W. as we have noted, would be to replace 

du 
dx dy - = E1@(x.y) 

by drr E lQ (x. y) 2 
-= 
dx dy 

(l-L)2 

N El@ (x. y) (1 + + 

M2 
MW 

W 

2 2 
in the deep inelastic region. Roughly, 

> m (GeV/c) 
<-‘E in GeV - N .25, 

l 2 
so for El= 200 GeV we have < -q2> = 50 (GeV/ c) 

-i 
, and 

2<-q > 2.50 2 

M2 
=--sin 8 

(37)2 
w” 0 7 s& 

Would need very good statistics and control over systematic? to see this. 

If scaling is not exact, and breaks down on a mass scale 

A N IO-20 GeV/ c, this method fails. 

(iii) Finally, Sehgal 39 (g eneralizing work of Terazawa4’) has derived 

some nice relations satisfied by leptonic cross sections in 9 intermediate 
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vector boson theory with TV -e symmetry (valid in gauge theories since 

scalar boson couplings cc lepton mass and therefore are negligible in 

lowest order): 

IT(; e) 
1< e 

cr(i e) 
-JL- <3 

3 - (r (u,e) ’ cr(vpe) - 

v(G,e) -D (tpe) =f [ rr(vee) -(r Cvpe)] 

[u (v,e) -$r (ice)]+ - [rr(vpe) -fn(Gpe)la =$, 

with the cross sections in the last relation measured in units of G2meEl/rr. 

(B) Search for heavy leptons 

The Weinberg-Salam model discussed above uses only the presently known 

leptons. Other gauge models with neutral currents, and &l models with- 

out neutral currents, have heavy leptons. 

Let M’, M” be heavy leptons with the same lepton number as the p‘. They 

will be produced in the reactions 

v SN-M 
t 

t hadrons 
0 

fiis~ is a neutral 

IJ- 

1 

U t N - M t hadrons urrent reaction‘ 
P c; I 

t 
” tv tp 

P P 

I 

wrong sign 1 VFS ptt p- 

I 

two leptons: 

t 

v~+v += 

lepton: good signature 
vet et+ p- 

good signature 
e 

uP t hadrons 
p-t hadrons 

Bjorken and Llewellyn-Smith 
41 

have estimated cross sections. Conclude 

(i) NAL should be able to set a mass limit in the 4-10 GeV/c’ range, 

(ii) Branching ratio into leptons - 50%. 
(iii) 

i 

t 
vII t N - M t hadrons - p ‘t (vP tvp ) t hadrons 

Ill 
v tN- Mot hadrons 

one would see apparent 

P 
- p-t hadrons 

violations of scaling and lepton locality, and so could distinguish from the direct 



-43- 

1 ip t N - pf t hadrons 
reactions 

u tN- 
P 

p- t hadrons 

(C) Search for neutral current. Here, as we have heard, there is accum- 

ulating evidence for an effect. First priority is obviously confirmation of 

existence of neutral currents. Bearing in mind the necessary cautions about 

the existence of many other models with neutral currents, both gauge and non- 

gauge, let us systematically discuss neutral current effects within the frame- 

work of the Weinberg-Salam model. 

(i) Leptonic channel 
42 

Have (E2= lab energy of final electron: El = incident neutrino energy) 

2 
da y -= 

dE2 n 

gV 
and g 

A 
are given by the following table: ’ 

Reaction Weinberg-Salam 

gV g A 

” + e -e-t u a t 2 sin29 
e e W 4 

_ _ 
u + e -e-t i 

e e 
3 t 2 sin2ElW -$ 

u t e -e-+ Y 
P CL 

-a t 2 sin2eW -4 

v t e -e-t ; 
P CL 

-+ t 2 sin20 
w i 

Announced results: 

“Standard”.V-A Theory 

gV g A 

1 1 

1 -1 

0 0 

0 0 

_ _ 
(a) Write (r (vet e -e -t ;=, = c-10 

-41 
CllT2( 

E1 
-) 
GeV 

C = 0.54 in “standard” V-A theory 

= 0.136 - 2.86 in Weinberg-Salam model 

Gurr, Reines and Sobel 
43 

Savannah River reactor - find m < 3rrVwA at 90% - 

confidence level 
2 

3 sin 0 < 0.33 at 90% confidence level 
W- 
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(b) [r (up+ e-- e-t v ) 
P 

-e-t;) 
P 

zero in ‘I standard” V-A theory; 

nonzero in Weinberg-Salam model 

CERN Gargamelle 44 375,000 

360,000 

Weinberg-Salam predictions 
min. max. 

V 0.6 6.0 
P 

; 0.4 8.0 
P 

vP pictures 
Vr pictures 

estimated background observed 

0.3to. 2 0 - 

0.03to. 02 - 
k/ 

0.1 < sin20W< 0.6 as 907” 
confidence limits 

(ii) Hadronic channel 

(a) Inclusive reactions 

Define RV= 
dvp t N-V t I-) 

P where we deal with inclusive re- 
u(vp t N --p-t I?’ ) 

actions, so that all allowed hadron final states are included in r, r’ . 

LT(~ tN --Vtr) 
Also define R- = M . 

v 
r(; tN - p+t r”) 

P 

N = $ (ntp) = average nucleon target 

Pais and Treiman 
45 

, Paschos and Wolfenstein 
46 

derive the following 

bounds in the Weinberg-Salam model (with GIM extension): 

(I) Assuming scaling in deep inelastic electroproduction (%ut not in weak 

production) one finds 

Ry 2 i { 1 - 2 sin’ Ow t’ }2, 

2 1 

t= 
+ $ MNEl so dx FIN(x) 

IJ (v tN - p-t rl) 
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Using 4 dx F;N(x) ‘1 0.14 

‘ 
IT (VP+ N -p-t l-1 ) = FMNEl*0.52 

one gets t = 0.36. 

Hence for 
2 

sin 8 < 0.33 one gets 
W- 

Rvl 0.18 . 

(2) Assuming scaling in weak production as well as in electroproduction, the 

bound is improved to 

R,,z+ [$t+ - (l-x2,t] , x = l-2 sin’@ 
W 

(not to be confused with the scaling 
variable x used above ! ) 

For 
2 

sin 8 < 0.33 get now 
W- 

Rv&0.23 . 

(3) Taking t = l/3 (very close to experiment) this bound becomes 

Rv 2 i (1 t x t x2) > 0.24 for sin’e -co.33 . - W- 

Similarly, using t = l/ 3 and lr ‘/” 
v 

= l/3, we get 

Ry ) 4 (1-x t x2) > 0.39 for sin2eW 5 0.33. - 

Announced results: 

CERN 
47 

Gargamelle 

Ry= 0.23 + 0.04 Consistent with 

Ry = 0.43+0.12 
2 

sin 0 
W 

- 0.3 to 0.4 . 

48 
NAL 0.63 Rv+ 0. 37 RF = 0.20 t 0.05 . 

The corresponding CERN result for this p/i mix is 0. 30 t 0. 05. - 

So NAL and CERN are roughly consistent, within errors. (CERN is not 

strictly in the deep inelastic region, and so need not precisely agree with NAL. ) 

‘Weinberg-Salam lower bounds, with simplifications of (3) above, for NAL 

p/L mix: 
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0.63 Rvt 0. 37 RV 10.63 ; (1+&x2)+ 0. 37 f (l-xtx’) 

= 0.29 (1+x2)-0.08x,0.28 . 
[ i.Mfnim&ed by x=0.14] 

w= 0.43 

Hence the Weinberg-Salam model is being pushed a little, but it is too 

soon to say anything definitive. 

(b) Exclusive reactions 

(1) The quasielastic reaction vI* t p - up+ p is hard to detect experimentally, 

because the proton tends to recoil with low momentum. In the Weinberg- 

Salam model, one finds the bounds 
35 

dvp t p --u +P) 
0.15 < - 

cr(Yp t n - P-t P) 

< 0.25 for - sin2ew< 0.5 . 

Experiment gives 0.12 f 0.06 for this ratio. 

(2) Weak TI production 
0 

A rtv +p-v tptlr )i u(v tn-V tnt,O) 
Consider R= CL 

2rr (VP +n-&L-tp+lr”) 

In A (1236) - dominance approximation, one finds 
49 

6 >0.4-0.5 for 
2 

sin 8 < 0.33. 
W- 

Two corrections to this result are needed 
16 

1. I = 3 final states are not negligible --this reduces the theoretical 

prediction. 

2. When experiments are done in nuclear targets (say 6C 
12 

or 13A127), 

charge exchange effects further reduce the theoretical prediction. 

Charged currents copiously produce il ; when these charge exchange 

0 
into pi , they increase the denominator of 6, and hence reduce the ii 

measured on a nucleus. 



-47- 

Theoretical estimates of 
50 

1. (vi& ~relativistic generalization of static 

model used to discuss Argonne v t p - p&+rr’) and of 
51 

2. (via de- 

tailed model for nuclear charge exchange) gives (for 13A1 
27 

; neutrino 

energy E 1 =lGeV) 

A (1236)tI= l/ 2 
t Charge exchangeL7 

A (1236) only ) A (1236)+1=1/ 2 ) corrections for 13A1 ] sin2eW 

k 0.56 0.40 0. 23 0.3 

0.46 0.33 0.18 0.4 

Uncertainty is perhaps -30%. [ Could test the charge exchange model 

by measuring nko electroproduction on nuclear targets] . 

Announced results: 

W. Lee52 (old Columbia spark chamber experiment on 13A127). 

I 
R < 0.14 at 90% confidence level (no candidates). 

At Argonne will be able to look for n production without having to worry 

about nuclear charge-exchange corrections. Predictions of production 

model 
50 

averaged over the Argonne neutrino spectrum are: 

IT (v tp-VP t,tT", u(V tp - V tntrr+) 
i-I P 

m (u,+p-p -+pfrr 
f 

) m (vptp-ti- tp+lr+) 
1 SUM 1 sin2eW 

0.12 0.09 0.21 0.3 

0.10 0.08 0.18 0.4 

Conclusion: There seems to be evidence for neutral currents. All 

experiments to date are consistent (but in a number of cases just barely 

so) with Weinberg-Salam phenomenology with sin 
2 

0 
W 

- 0. 3-0.4. To 

determine the phenomenology will obviously need many experiments 

in many different channels. 
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(iii) Low energy nuclear search possibilities 

A number of authors have discussed possible nuclear effects arising 

from the presence of neutral w-:ak currents. We recall again 

It= Vz - At - 2 sin2erl, J”- t $.T”,- “‘2 d J I” Cl,1 
7 

3 +w; (Isoscalar)“charm” and strangeness 

Isoscafar 
currents; presumably will have very 

electromag- 
small nuclear matrix elements at 

netic current 
low energy 

(a) NuclearGamow-Teller transitions 

The axial-vector part of 
I’, 

is -A: and is independent of 8 w. Stanford 

group (Donnelly et. al. 
53 

) have discussed reactions of the form 

iGet AT --IT+ 
A T” 

e 
via allowed GamowTeller transition, 

initiated by reactbr v . One would detect 
A 

e 
T:: by its y-ray decay. Some 

cases allow an additional delayed coincidence, from a further decay after 

y-emission, which increases the signal to noise ratio at the expense of 

counting rate. Some typical reactions are: 

7Li($ i)--‘~i:‘($~ 3, 0.478 MeV) 

19F(it $ )- 19F”$’ 1 554 MeV). 
22’ * 

Counting rates at Savannah River for reasonable assemblies are -l/day; 

in the case of 
19 

F, a decay chain involving two y’ s would permit - 

signal/noise ratio N 1:l . 

(b) Giant dipole resonance excitation 

:L 
Here a vector-current, isovector transition is involved, so the rele- 

vant part of the neutral current is (l-2 sin i w) v; . Bilenky and Dadajan 
54 

estimate the cross section as 

“Actually, axial contributions may not be negligible. More detailed calculations 
are desirable. 
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vtv 
uT-T”- >(l-2 sin2eW)2m 

0 

El(MeV) - 30 50 100 

Ta181 1.7.10 -41 2. 3’ 10 -40 5.5.10 -39 

V51 1.4.10-42 2.5.10m41 7.1.10m40 

so this might be a suitable experiment for neutrino beans at meson 

factories. (They do not discuss experimental problems connected 

with detection of the excited state T*. ) 

(cl Coherent nuclear scattering 

Freedman 
55 

has pointed out that neutral currents will lead to 

coherent neutrino-nucleus scattering VT-UT. At very low energies 

the matrix element is proportional to < 13-2 sin2 e,Q > T 
with I3 and Q 

respectively the operators for the 3rd component of isospin and the 

charge. For higher energies there will also be a momentum-transfer- 

dependent form factor. For heavy nuclei, coherent process,es will 

show a rate enhancement factor > A compared to incoherent neutrino 

induced processes. Since the coherent cross section is almost energy 

independent, meson factory energies of order 100 MeV might be more 

suitable than higher energies: experimental observation would re- 

quire detection of the recoil nucleus T. 

Possible astrophysical implication of this process: In stellar collapse 

to form a supernova, coherent Y Fe scattering could lead to an enhanced 
i 

neutrino radiation pressure which could give observed blowing off of the 

outer layers. 
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(iv) Neutral current phenomenology 

We have discussed neutral current searches within the framework 

of the Weinberg-Salam phenomenology, but the above experiments are of 

interest regardless of the underlying theory, and will help to pin down the 

structure of the neutral current. In a more general vein, Pais and Treiman 
56 

have examined how one might test for various structural properties of the 

neutral current in accelerator neutrino experiments. For example, one 

important question is whether the vector part of 
$ 

z is conserved. Again, 

the forward lepton theorem discussed above can be used. We consider 

VtN-vtr. 

Presence of parity violating effects at q2= 0 (i. e., when the final neutrino 

emerges precisely in the forward direction) 2 vector part of j-L isnot 

conserved. Presence of parity violating effects for q 
2 

#O, which vanish always when 
q2-0, would suggest that the vector part of A’$ is conserved. 

One final comment: Even talking about a neutral “current” reflects a 

theoretical bias that the effective Fermi interaction involved is V, A and not - 

S, T or P. Since we are dealing with a new phenomenon this assumption will 

in time have to be subjected to experimental test. 
57 

CD) Search for “charm” (any additive quantum number of hadrons beyond 

I3 and Y). 

We have seen that new “charmed” hadrons are probably needed to in- 

corporate hadrons into gauge models of the weak and electromagnetic 

interactions, and that the masses of such “charmed” states are likely to 

be < 10 GeV/c’. So the search for “charm ‘I becomes relevant at NAL 

energies. 
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(i) Detection via production and decay 
58 

“Charmed” particles with masses > a few GeV/c’ will only go 

a fraction of a cm. before decaying, even when produced at NAL energies, 

so will not see tracks. Reasonable to assume about 10-50s decay into 

leptons, as a first guess. 

Produce in !‘charm” b‘aryon 

J 

VP+N 
- p-i EC t hadrons 

w 
“charm” meson 

p + MCt hadrons 

Leptonic BC 
-t -t 

or MCdecay will then produce a two lepton signature p e .P i-’ . 

If leptonic decays are strongly suppressed, detection via produc- 

tion and decay will be very difficult. In the GIM model, we have heard in 

Gaillard’s talk that the leptonic breaking ratio of charmed particles may 

well be suppressed down to a level of order 3%. 

(ii) Changes in the saturation values of the Adler and Gross-Llewellyn- 

Smith sum rules. 
59 

We recall that the local current algebra sum rule measures 

[@A. J;C&h+] . When additional terms are present in the weak 

charged current, the value of this commutator is changed, giving 

2 Jmdv[ WE - Wi] = A # <4 cos20C13t (3Y+Z13)sin20C>N 

A = a number computable from structure of “charmed” part of the 

weak current. Similarly, the Gross-Llewellyn-Smith sum rule is 

modified to read 
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wl] = B # <4BtY(2-3 sin2HC)+213sin2eC>N 

B = a second structure-dependent number 

Obviously, to see the deviation of the sum rules from their standard 

values we must integrate the experimental data to v values well above - 

charm production threshold. 

Remark: Standard current algebra low energy theorems are not altered 

by the presence of “charm”. 

(iii) Charge symmetry violations 
60 

Let us neglect 0 
C’ 

When “charmed” particles are not present, 

the charged weak current is 

I;= 6 y” (l-y5)n = Vyti2- A;ti2, 

which satisfies the charge symmetry relation 

-inI 
e “8-k iv12 = _ ($ t, 

with I2 the second component of the isotopic spin. In other words 
XV 

and ( 
k 

;,+t ransform as members of the same I = 1 multiplet. When 

“charmed” particles are included ,I; is augmented by a piece 

A fw = 6’ yr (l-y5b, 
which is an isotopic scalar and therefore satisfies 

-inI in1 
e 2A fw e 2= A#; # - (A gp,)+ . 

Thus, above “charm” threshold there will be strong charge symmetry 

violations. In particular, the relations (valid when Bc= 0 if charge 

symmetry is respected) 
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vN 
W. 

CN 
1 =wi , N = + (ntp) 

would be strongly violated. Many tests for charge symmetry violation can 

be based on this fact. 

(iv) Temporary scaling breakdown associated with “charm” threshold. 
60 

The appearance of a fundamental new threshold might lead to scaling 

breakdown in deep inelastic neutrino reactions when this threshold is sur- 

passed. Assuming that scaling is a fundamental asymptotic property, scal- 

ing behavior would reappear at energies sufficiently far beyond’Czharm”thresh- 

old. However, one can skeptically ask what is special about the “charm” 

threshold--why don’ t similar (unobserved) scaling violations appear as other 

thresholds, say for antibaryon production are passed? 

Acknowledgment 

I wish to thank D. J. Gross, S. B. Treiman and F. Wilczek for 

helpful conversations. 



R-l 

REFERENCES 

[N ote: In preparing this talk I made extensive use of preprints. In com- 

piling the following bibliography I have not made a systematic attempt to 

track down final published references. ] 

1. We follow the metric conventions of J. D. Bjorken and S. D. Drell, 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Relativistic Quantum Fields (McGraw Hill, New York, 1964). 

S. Weinberg, Phys. Rev. u, 1375 (1958). 

G. Feinberg and S. Weinberg, Phys. Rev. Letters I?, 381 (1961). 

T. Eichten et.al., Phys. Letters 46B, 281 (1973). - 

M. Derrick, !‘Quasi-Elastic Neutrino Reactions: Form Factors, ‘1 

Argonne National Laboratory Report ANL/HEP 7350 (1973); M. 

Gourdi=, “Weak and Electromagnetic Form Factors of Hadrons”; 

both are talks presented at the 1973 Bonn Conference. 

S. L. Adler, Ann. Phys. 0. 189 (1968). 

P. Schreiner and F. Von Hippel, “Neutrino Production of the A (1236), ‘I 

Argonne National Laboratory Report ANL/HEP 7309 (1973). 

R.P. Feynman, M. Kislinger and F. Ravndal, Phys. Rev. DL, 2706 

(1971); F. Ravndal, Lettere al Nuovo Cimento 2, 631 (1972). 

S. L. Adler, Phys. Rev. 135, 963 (1964). 

S. L. Adler, “Tests of the CVC and PCAC Hypotheses in High Energy 

Neutrino Reaction, ” in Proceedings of the Informal Conference on 

Experimental Neutrino Physics, CERN 65-32 (1965), p. 83. 

S. D. Drell, Phys. Rev. DJ, 2190 (1973); M. DeVincenzi and G. 

Preparata, “High Energy Neutrino Scattering at Low Q2: Strong 

or Weak PCAC?“, I. N. F. N. - Sezione di Roma Nota Interna n. 469 (1973). 



R-2 

12. 

13. 

14. 

15. 

15a. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

For further details and references see the discussion of C. H. 

Llewellyn-Smith, Physics Reports 2_c, No. 5 (1972). 

M. Cell-Mann, Phys. Rev. 125, 1067 (1962). - 

S. L. Adler, Phys. Rev. 143, 1144 (1966). 

J. D. Bjorken, Phys. Rev. 17, 1547 (1969). 

In this subsection we follow closely unpublished lecture notes of 

C. G. Callan. 

D. H. Perkins, llNettrino Interactions!: in Proceedings of the XVI 

International Conference on High Energy Physics, Chicago-Batavia 

2, 189 (1972); B.C. Barish, Phys. Rev. Letters&, 565 (1973); 

A. Benvenuti et. al., Phys. Rev. Letters 30, 1084 (1973) and 32, 125 

(1974). 

C. G. Callan and D. G. Gross, Phys. Rev. Letters t, 156 (1969). 

J. D. Bjorken, D. Cline and A.K. Mann, Phys. Rev. G, 3207 (1973). 

C. H. Llewellyn-Smith, Nucl. Phys. E, 277 (1970). 

D. J. Gross and C. H. Llewellyn-Smith, Nucl. Phys. B14, 337 (1969). - 

0. Nachtmann, J. Physique 32, 99 (1971), Nucl. Phys. B>, 397 (1972) 

and Phys. Rev. DL, 686 (1972); C.G. Callan et.al., Phys. Rev. DA, 

387 (1972); M. Paschos, Proceedings of the XVI International Con- 

ference on High Energy Physics, Chicago-Batavia 4, 166 (1972). 

R. McElhaney and S. F. Tuan, Phys. Rev. DL, 2267 (1973); 0. 

Nachtmann, Phys. Rev. DJ, 3340 (1973). 

For further discussion and references, see D. J. Gross and S. B. 

Treiman, Phys. Rev. DA, 1059 (1971). 



24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

R-3 

M. Chanowitz and S. D. Drell, Phys. Rev. Letters 30, 807 (1973) 

and “Speculations on the Breakdown of Scaling at 10 
-15 

cm”, 

SLAC-PUB-1315 (1973). . . 

K. Wilson, Phys. Rev. 179, 1499 (1969). 

For further details and references see D. J. Gross and F. Wilczek, 

“Asymptotically Free Gauge Theories II”, Princeton University 

preprint (1973); D, J. Gross, “Scaling in Quantum Field Theory, ‘I 

talk delivered at the SLAC Topical Conference on Weak and Electro- 

magnetic Interactions (1973). 

R. Carlitz and Wu-Ki Tung, “Measuring Anomalous Dimensions at 

High Energies, I’ Enrico Fermi Institute preprint EFI 73110 (1973). 

D. J. Gross, “How to Test Scaling in Asymptotically Free Theories, ‘1 

Rockefeller University Report No. COO-2232B-46 (1974). 

W. Kummer and G. SegrG, Nucl. Phys. 64, 585 (1965). 

S. Shabalin, Yadernaya Fisika 2, 1050 (1958) and_12, 411 (1971). 

N. Christ, Phys. Rev. 176, 2086 (1968). 

S. Weinberg, Phys.Rev. Letters%, 1264 (1967): A. Salam, in 

Elementary Particle Theory, edited by N. Svartholm (Almquist 

and Forlag, Stockholm, 1968), p. 367. 

J.M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Letters 

30, 1268 (1973) andz, 498 (1974): C.H. Llewellyn-Smith, Phys. 

Letters 46B, 233 (1973). 

For a clear pedagogical treatment, see J. Bernstein, “Spontaneous 

Symmetry Breaking, Gauge Theories, The Higgs Mechanism and All 

That, ” Revs. Mod. Phys. (in press). For a survey of alternative 



R-4 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

J. D. Bjorken and S. L. Glashow. Phys. Letters 11, 255 (1964). 

M. K. Gaillard and B. W. Lee, “Rare Decay Modes of the K-Mesons in 

Gauge Theories, ‘I NAL preprint (1974). 

L.M. Sehgal, Phys. Letters 48B, 60 (1974) - 

H. Terazawa, “Simple Relations Among Leptonic Weak Interactions, ‘I 

Rockefeller University report COO-2232B-14 (1973). 

For detailed discussion and further references, see J. D. Bjorken and 

C.H. Llewellyn-Smith, Phys. Rev. DL, 887 (1973). 

G. ‘t Hooft, Phys. L&t. 37B. 195 (1971). - 

H. S. Gurr, F. Reines and H. W. Sobel, Phys. Rev. Letters 3, 1406 (1972). 

F. J. Hasert et. al., Phys. Letters 46B, 121 (1973). 

A. Pais and S. B. Treiman, Phys. Rev. DA, 2700 (1972). 

E. A. Paschos and L. Wolfenstein, Phys. Rev. DJ, 91 (1973). 

F. J. Hasert et. al., Phys. Letters 46B, 138 (1973) and CERN preprint - 

TC-L/Int. 74-l (to be published). 

A. Benvenuti et. al. (to be published;. 48. 

49. 

50. 

models, see B. W. Lee, “Perspectives on the Theory of Weak Interactions, II 

Proceedings of the XVI International Conference on High Energy Physics, 

Chicago-Batavia 5, 249 (1972). S ee also the Appendices of ‘J. D. Bjorken 

and C.H. Llewellyn-Smith, Ref. 41. 

S. Weinberg, Phys. Rev. D>, 1412 (1972). 

S. L. Glashow, J. Ilioupoulos and L. Maiani, Phys. Rev. DA, 1285 (1970). 

B. W. Lee, Phys. Lett. 40B, 420 (1972). - 

S. L. Adler, Phys. Rev. Dz. 229 (1974) and S. L. Adler (unpublished). 



R-5 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

S. L. Adler, S. Nussinov and E. A. Paschos, “Nuclear Charge Exchange 

Corrections to Leptonic Pion Production in the (3, 3)-Resonance Region, I’ 

Phys. Rev. D (in press). 

W. Lee, Phys. Lett. 40B. 423 (1972). - 

T. W. Donnelly et. al., “Nuclear Excitation by Nrntral Weak Currents, ” 

SLAC-PUB-1355 (ITP-448) (1973). 

S. M. Bilenky and N. A. Dadajan, “Possible Test for Neutral Currents 

at Low Energies”, Dubna preprint E2-7416 (1973). 

D. Z. Freedman, “Coherent Neutrino-Nucleus Scattering as a Probe of 

the Weak Neutral Current, ” NAL-PUB-73/76-THY (1973). 

A. Pais and S. B. Treiman, “Weak Neutral Currents, ” Rockefeller 

University report no. COO-2232B-33/ COO-3072-21 (1973). 

S. P. Rosen, “One Theorist’s Favorite Neutrino Experiment, Purdue 

preprint (1974). 

G.A. Snow, Nucl. Phys. B55, 445 (1973). - 

M.A. B. Beg and A. Zee, Phys.Rev. Letters 30, 675 (1973) and “High 

Energy Neutrino Experiments and the Nature of Charm, ” Rockefeller 

University report COO-2232B-29; A. De Rtijula and S. L. Glashow, 

“What Neutrinos Will Tell About Gauge Theories, ” Harvard preprint (1973). 

A. DeRxljula and S. L. Glashow, “Tests of Charge Symmetry and Scaling 

in Neutrino Physics”, Harvard preprint (1973) and “Tests of the Isospin 

Structure of the Weak Current in Neutrino Physics,’ Harvard preprint (1973). 


